Environmental Transformation of the Built Environment

Thomas Auer, Transsolar/TUM

Organisers:

International Co-owners:

positive proof of Global Warming

credit: BDir Dipl.-Ing. Hans-Dieter Hegner Bundesministerium für Verkehr, Bau und Stadtentwicklung

CO₂ TO ZERO

WE NEED TO REDUCE OUR EMISSIONS

Desired CO₂ Emissions in Stuttgart --- and Reality ---

IST - SOLL - Verlauf CO₂-Emissionen Stadt Stuttgart bis 2050

Abbildung 2: Verlauf der CO2-Emissionen der Stadt Stuttgart bis 2005 (ab 2001 geschätzt) und Ziele bis 2020 (minus 40%) bzw. bis 2050 (minus 90%)

Wuppertal Institut für Klima, Umwelt, Energie Gmbh

Lost in Transformation?

25

TRA I HE

GADGETS

PERFORMANCE by DESIGN

BMW ORACLE Recitly

BMW ORACLE Racing

Welcome to the breathtaking Tokyo Water Park

credit: Frank Ockert

Venice Biennale 2010 Cloudscapes

photo: Tetsuo Kondo

Venice Biennale 2010 Cloudscapes

photo: Tetsuo Kondo

Manitoba Hydro - Winnipeg

e 10 11 1

0

architect: KPMB

Climate - Winnipeg

Boiling water at -35° C Instant Sublimation

Typical Floor Plan

Winter Time: Heating & Cooling

© Bryan Christie

Summer Time: Cooling

© Bryan Christie

photo: Eduard Hueber

photo: Gerry Kopelow

Energy use of Canadian buildings

* as of September 2010

Manitoba Hydro Place - Annual Rolling Energy Totals

Organisers:

CONSTRUCTION

INDUSTRY COUNCIL

HKGBC

International Co-owners:

<u>லி iisbe</u>

photo: Gerry Kopelow

French School - Damascus

architect: Atelier Lion, Paris

Historic city of Damascus Fixed shading + vegetation

Net Zero by Design Comfortable and Energy Efficient, Building Performance by Design

School of Design at NUS

Client National University Singapore

Architect

Series Multiply, London and Singapore

MEP and Architects of record Surbana, Singapore

VISION

high-comfort net-zero energy building

IKGBC

International Co-owners:

adaptive comfort approach

operative Temperature 29°C tempered air + elevated air speed

Photovoltaic renewable energy

Hybrid Tempered, 26% library, design studios Theatrette, offices

Full AC,17% green building technology lab energy lab, computer lab

Natural Cross Ventilated, 46% with elevated air speed social Plaza and social interaction spaces modeling areas, work shops smart green home

> **Circulation** micro climate, wind vegetation, green and blue

mech and aux rooms 10%

Thermal Comfort without elevated air speed

Thermal Comfort with elevated air speed

0.7 m/s

diago an

0.3

MET 1.2 Summer CLO 0.6

Maximal renewable energy production with PV system defines the available electrical energy to operate the building on net zero.

Ref. Building	209	112	369	821	436	1947 MWh/a
---------------	-----	-----	-----	-----	-----	------------

Optimize the envelope for thermal comfort and energy and glare and daylight

Design for adaptive comfort with hybrid system great fresh air, tempered and elevated air speed

Comfort with elevated air speed Sustainable Cooling Concepts for the Tropics

BRAC University, Bangladesh

Client BRAC, Bangladesh

Architect WOHA, Singapore

Trévelo & Viger-Kohler Architectes Urbanistes 23 Rue Olivier Métra 75020 Paris / t.+33 (0)1 47 00 04 62 f.+33 (0)1 47 00 08 85 www.tvk.fr/agence@tvk.fr

International Co-owners:

Organisers:

© TVK Architectes Urbanistes

© TVK Architectes Urbanistes

HKGBC

© TVK Architectes Urbanistes

© TVK Architectes Urbanistes

34

Centenary City Abuja, Nigeria

Masterplan for a Sustainable City Development

Client: Centenary City Ltd, Abuja

Design Team:

AS+P – Albert Speer + Partner, Frankfurt Transsolar Energietechnik, Munich Atelier Dreiseitl, Überlingen Primetech Design + Engineering, Abuja

> Land Area: 10 km² Total GFA: 6 Mio m² Inhabitants: 135 000 Masterplan: 2013 – 2014 Construction 2015 - 2025

Centenary City Abuja

Framework for sustainability concept

Centenary City Abuja

Framework for sustainability concept

STRATEGY

The site

View from the mountain

Local Weather Conditions

Air temperature and humidity over the course of a year

---Outside Air Temperature [°C] ---Dew Point Temperature [°C] ---Absolute Humidity [g/kg]

Step 1: Optimize city layout

Solar Access

Step 1: Optimize city layout

Optimized city ventilation

Step 1: Optimize city layout

Outdoor Comfort

overhead shading trees + water

Step 2: Minimize Building Energy Consumption

Optimize Shading vs. Daylighting

22

20

0 m

0.5 m

1.0 m

1.5 m

2.0 m

42

40

0 m

0.5 m

1.0 m

1.5 m

2.0 m

Step 3: Maximize Efficiency of Energy Generation

Efficient power generation

Centenary City Abuja

return of invest after 5.5 years

savings on running costs over > 20% of premium per year

"Transforming Our Built Environment through Innovation and Integration: Putting Ideas into Action"

- Successful at all scales
- Holistic and Synergetic
- Environmental Quality Creating Delight
- Aspirational and Inspirational

At a Bar in Hong Kong...

Thank you

